Platonic Solids

Derive the surface area of the regular polyhedrons as a function of the radius of a circle that circumscribes a polygonal face.

For a regular n-gon the angle, θ (see figure above) is simply $\frac{2 \pi}{n}$ where n is the number of sides. The other two angles in the triangle shown are each $\frac{\pi-\theta}{2}$ or $\pi\left(\frac{1}{2}-\frac{1}{n}\right)$
We can use the sine rule to find the length, $L n$, of a side of the polygon.

$$
\frac{L_{n}}{\sin \left(\frac{2 \pi}{n}\right)}=\frac{r}{\sin \left(\pi\left(\frac{1}{2}-\frac{1}{n}\right)\right)}
$$

This simplifies to:

$$
L_{n}=2 \cdot r \cdot \sin \left(\frac{\pi}{n}\right)
$$

The area of the triangle is:

$$
A_{T}=\frac{1}{2} \cdot L_{n} \cdot r \cdot \cos \left(\frac{\theta}{2}\right)
$$

$$
\begin{array}{ll}
\text { or: } & A_{T}=r^{2} \cdot \sin \left(\frac{\pi}{n}\right) \cdot \cos \left(\frac{\pi}{n}\right) \\
\text { or: } & A_{T}=\frac{1}{2} \cdot r^{2} \cdot \sin \left(\frac{2 \pi}{n}\right)
\end{array}
$$

The area of the n-sided polygon is therefore: $\quad A_{n}=\frac{n}{2} \cdot r^{2} \cdot \sin \left(\frac{2 \pi}{n}\right)$ as there are n triangles in the polygon.

There are five Platonic solids:
Tetrahedron: 4 faces, 6 edges, 4 vertices. Triangular faces $(n=3)$.
Cube: $\quad 6$ faces, 12 edges, 8 vertices. Square faces $\quad(n=4)$.
Octahedron: 8 faces, 12 edges, 6 vertices. Triangular faces $\quad(n=3)$.
Dodecahedron: 12 faces, 30 edges, 12 vertices. Pentagonal faces ($n=5$).
Icosahedron: 20 faces, 30 edges, 12 vertices. Triangular faces ($n=3$).
The total surface area of the Platonic solids can therefore be expressed as:

$$
A(f, n, r):=f \cdot \frac{n}{2} \cdot r^{2} \cdot \sin \left(\frac{2 \pi}{n}\right)
$$

where f is the number of faces.

Create a calculator where the user can select a regular polyhedron by its name or number of sides, and for a given radius of the circumscribed circle of the polygonal face, the surface area will be calculated.

Define function to select polyhedron parameters given initial letter of polyhedron name:
$P V a l s(P):=\left[\begin{array}{l}4 \\ 3 \\ 6 \\ 4\end{array}\right] \cdot(P=" \mathrm{~T} ")+\left[\begin{array}{c}6 \\ 4 \\ 12 \\ 8\end{array}\right] \cdot(P=" \mathrm{C} ")+\left[\begin{array}{c}8 \\ 3 \\ 42 \\ 6\end{array}\right] \cdot(P=" \mathrm{O} ")+\left[\begin{array}{c}12 \\ 5 \\ 30 \\ 12\end{array}\right] \cdot(P=" \mathrm{D} ")+\left[\begin{array}{c}20 \\ 3 \\ 30 \\ 12\end{array}\right] \cdot(P=" \mathrm{I} ")$
Now define polyhedron parameters calculator function:
PolyhedronParameters $(p, r):=\left[\begin{array}{ccc}\text { "Area" } & \text { "Faces" } & \text { "Edges" } \\ A\left(\operatorname{PVals}(p)_{0}, P V a l s(p)_{1}, r\right) \operatorname{PVals}(p)_{0} & \operatorname{PVals}(p)_{2} & P \operatorname{Vals}(p)_{3}\end{array}\right]$

Example calculation:
Select the initial letter of the polyhedron of interest (example is "T") and the desired radius (example is 1):

$$
\begin{aligned}
& p:=" \mathrm{~T} " \quad r:=1 \\
& \text { PolyhedronParameters }(p, r)=\left[\begin{array}{cccc}
\text { "Area" "Faces" "Edges" "Vertices" } \\
5.196 & 4 & 6 & 4
\end{array}\right]
\end{aligned}
$$

The Euler characteristic, $\mathrm{V}-\mathrm{E}+\mathrm{F}$, is 2 for all the polyhedra.

Graph the surface area as a function of the number of faces.
$\begin{gathered}i=0 . .4 \\ r:=100 \\ Z_{i x}\end{gathered} \quad P:=\left[\begin{array}{l}" \mathrm{~T} " \\ \text { "C" } \\ " \mathrm{O} " \\ " \mathrm{D} " \\ " \mathrm{I} "\end{array}\right] \quad\left[\begin{array}{c}\text { Area }_{i} \\ \text { Faces }_{i}\end{array}\right]:=\left[\begin{array}{l}\text { PolyhedronParameters }\left(P_{i}, r\right)_{1,0} \\ \text { PolyhedronParameters }\left(P_{i}, r\right)_{1,1}\end{array}\right]$

