Platonic Solids

Derive the surface area of the regular polyhedrons as a function of the radius of a circle that circumscribes a polygonal face.

For a regular n-gon the angle, θ (see figure above) is simply $\frac{2\pi}{n}$ where *n* is the number of sides. The other two angles in the triangle shown are each $\frac{1}{2}$ $rac{\pi- heta}{2}$ or π 1 \overline{n}

We can use the sine rule to find the length, Ln, of a side of the polygon.

$$\frac{L_n}{\sin\left(\frac{2\pi}{n}\right)} = \frac{r}{\sin\left(\pi\left(\frac{1}{2} - \frac{1}{n}\right)\right)}$$
$$L_n = 2 \cdot r \cdot \sin\left(\frac{\pi}{n}\right)$$

This simplifies to:

The area of the triangle is:

$$\frac{1}{n} = \sin\left(\pi\left(\frac{1}{2} - \frac{1}{n}\right)\right)$$

$$L_n = 2 \cdot r \cdot \sin\left(\frac{\pi}{n}\right)$$

$$A_T = \frac{1}{2} \cdot L_n \cdot r \cdot \cos\left(\frac{\theta}{2}\right)$$

$$A_T = r^2 \cdot \sin\left(\frac{\pi}{n}\right) \cdot \cos\left(\frac{\pi}{n}\right)$$

$$A_T = \frac{1}{2} \cdot r^2 \cdot \sin\left(\frac{2\pi}{n}\right)$$
Hygon is therefore:
$$A_n = \frac{n}{2} \cdot r^2 \cdot \sin\left(\frac{2\pi}{n}\right)$$
the polygon.

The area of the n-sided polygon is therefore: as there are n triangles in the polygon.

or:

or:

$$\mathbf{h}_n = \frac{n}{2} \cdot r^2 \cdot \sin\left(\frac{2 \pi}{n}\right)$$

There are five Platonic solids:

Tetrahedron:	4 faces, 6 edges, 4 vertices.	Triangular faces	(n=3).
Cube:	6 faces, 12 edges, 8 vertices.	Square faces	(n=4).
Octahedron:	8 faces, 12 edges, 6 vertices.	Triangular faces	(n=3).
Dodecahedron:	12 faces, 30 edges, 12 vertices.	Pentagonal faces	s (n=5).
Icosahedron:	20 faces, 30 edges, 12 vertices.	Triangular faces	(n=3).

The total surface area of the Platonic solids can therefore be expressed as:

$$A(f,n,r) = f \cdot \frac{n}{2} \cdot r^2 \cdot \sin\left(\frac{2\pi}{n}\right)$$

where f is the number of faces.

Create a calculator where the user can select a regular polyhedron by its name or number of sides, and for a given radius of the circumscribed circle of the polygonal face, the surface area will be calculated.

Define function to select polyhedron parameters given initial letter of polyhedron name:

$$PVals(P) \coloneqq \begin{bmatrix} 4\\3\\6\\4 \end{bmatrix} \cdot (P = "T") + \begin{bmatrix} 6\\4\\12\\8 \end{bmatrix} \cdot (P = "C") + \begin{bmatrix} 8\\3\\12\\6 \end{bmatrix} \cdot (P = "O") + \begin{bmatrix} 12\\5\\30\\12 \end{bmatrix} \cdot (P = "D") + \begin{bmatrix} 20\\3\\30\\12 \end{bmatrix} \cdot (P = "I")$$

Now define polyhedron parameters calculator function:

$$PolyhedronParameters(p,r) \coloneqq \begin{bmatrix} \text{``Area''} & \text{``Faces''} & \text{``Edges''} & \text{``Vertices''} \\ A(PVals(p)_0, PVals(p)_1, r) & PVals(p)_0 & PVals(p)_2 & PVals(p)_3 \end{bmatrix}$$

Example calculation:

Select the initial letter of the polyhedron of interest (example is "T") and the desired radius (example is 1):

$$\begin{bmatrix} (& (1)_{0}^{2} & (1)_{1}^{2} & (1)_{2}^{2} & (1)_{3} \end{bmatrix}$$

er of the polyhedron of interest (example is "T")
us (example is 1):
$$p := \text{``T''} \quad r := 1$$

$$PolyhedronParameters(p,r) = \begin{bmatrix} \text{``Area'' ``Faces'' ``Edges'' ``Vertices''} \\ 5.196 & 4 & 6 & 4 \end{bmatrix}$$

stic, V-E+F, is 2 for all the polyhedra.

The Euler characteristic, V-E+F, is 2 for all the polyhedra.

