Platonic Solids - the regular polyhedrons made up of regular polygons (the lengths of each side and interior angles are equal). The dodecahedron is given as an example.

In this worksheet we are defining the regular polyhedrons by the radius of the circle that circumscribes a polygonal face. Choose the radius (R).

The Number of faces, sides and vertices surface area and volume will be displayed below.

Select the shape from the list box below

Shape: $:$| |
| :--- |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Hetrahedron |
| Octahedron |
| Dodecahedron |

Face
Side
Verlices $:=\|$ if Shape $=$ "Tetrahedron"
Area Volume

Face $\leftarrow 4$
Side $\leftarrow 6$
Vertices $\leftarrow 4$
Area $\leftarrow 3 \cdot \sqrt{3} \cdot$ Radius 2
Volume $\leftarrow \frac{\sqrt{6} \cdot \text { Radius }^{3}}{4}$
else
if Shape $=$ "Hexahedron"
Face $\leftarrow 6$
Side $\leftarrow 12$
Vertices $\leftarrow 8$
Area $\leftarrow 12 \cdot$ Radius 2
Volume $\leftarrow(\sqrt{2} \cdot \text { Radius })^{3}$
else
if Shape $=$ "Octahedron"
$\left\|\|_{\text {Fare }}{ }^{8}\right.$
$\left[\begin{array}{c}\text { Radius } \\ \text { Shape } \\ \text { Face } \\ \text { Side } \\ \text { Vertices } \\ \text { Area } \\ \text { Volume }\end{array}\right]=\left[\begin{array}{c}10 \mathrm{a} \\ \text { "Dodecahedron" } \\ 12 \\ 30 \\ 20 \\ \left(2.853 \cdot 10^{3}\right) \mathrm{a}^{2} \\ \left(1.245 \cdot 10^{4}\right) \mathrm{a}^{3}\end{array}\right]$

